Getstudysolution is an online educational platform that allows students to access quality educational services and study materials at no cost.
Question 1.
      In ∆ABC right angled at B, AB = 24 cm, BC = 7 cm. Determine:
      (i) sin A, cos A
      (ii) sin C, cos C
      Solution:
      
Question 2.
      In given figure, find tan P – cot R.
      Solution:
      
Question 3.
      If sin A = 
      Solution:
      
      sin A = 
      sin A = 
      Let BC = 3k and AC = 4k
      
Question 4.
      Given 15 cot A = 8, find sin A and sec A.
      Solution:
      
Question 5.
      Given sec θ = 
      Solution:
      
Question 6.
      If ∠A and ∠B are acute angles such that cos A = cos B, then show that ∠A = ∠B.
      Solution:
      
Question 7.
      If cot θ = 
      (i) 
      (ii) cot²θ
      Solution:
      
Question 8.
      If 3 cot A = 4, check whether 
      Solution:
      
Question 9.
      In triangle ABC, right angled at B, if tan A = 
      (i) sin A cos C + cos A sin C
      (ii) cos A cos C – sin A sin C
      Solution:
      
Question 10.
      In ΔPQR, right-angled at Q, PR + QR = 25 cm and PQ = 5 cm. Determine the values of sin P, cos P and tan P.
      Solution:
      
      
Question 11.
      State whether the following statements are true or false. Justify your answer.
      (i) The value of tan A is always less than 1.
      (ii) sec A = 
      (iii) cos A is the abbreviation used for the cosecant of angle A.
      (iv) cot A is the product of cot and A.
      (v) sin θ = 
      Solution:
      (i) tan 60° = √3 , Since √3 > 1. (False)
      (ii) sec A is always ≥ 1. (True)
      (iii) cos A is the abbreviation for cosine A. (False)
      (iv) cot without ∠A is meaningless. (False)
      (v) sin θ can never be greater than 1.
      ∴ sin θ = 
Question 1.
  Evaluate the following:
  
  Solution:
  
  
Question 2.
  Choose the correct option and justify your choice:
  
  Solution:
  
  
Question 3.
  If tan (A + B) = √3 and tan (A – B) = 
  Solution:
  tan (A + B) = √3
  ⇒ tan (A + B) = tan 60°
  ⇒ A + B = 60° ……(i)
  tan (A – B) = 
  ⇒ tan (A – B) = tan 30°
  ⇒ A – B = 30° ……..(ii)
  Adding equation (i) and (ii), we get
  2A = 90° ⇒ A = 45°
  From (i), 45° + B = 60° ⇒ B = 60° – 45° = 15°
  Hence, ∠A = 45°, ∠B = 15°
Question 4.
  State whether the following statements are true or false. Justify your answer.
  (i) sin (A + B) = sin A + sin B.
  (ii) The value of sin θ increases as θ increases.
  (iii) The value of cos θ increases as θ increases.
  (iv) sin θ = cos θ for all values of θ.
  (v) cot A is not defined for A = 0°.
  Solution:
  
  
Question 1.

Solution:

Question 2.
Show that:
(i) tan 48° tan 23° tan 42° tan 67° = 1
(ii) cos 38° cos 52° – sin 38° sin 52° = 0
Solution:
(i) LHS = tan 48° tan 23° tan 42° tan 67°
= tan 48° tan 23° tan (90° – 48°) tan (90° – 23°)
= tan 48° tan 23° cot 48° cot 23° = tan 48° tan 23° .
= 1 = RHS
(ii) LHS = cos 38° cos 52° – sin 38° sin 52°
= cos 38° cos (90° – 38°) – sin 38° sin (90° – 38°)
= cos 38° sin 38°- sin 38° cos 38° = 0 = RHS
Question 3.
If tan 2A = cot (A – 18°), where 2A is an acute angle, find the value of A.
Solution:
tan 2A = cot (A – 18°)
⇒ cot (90° – 2A) = cot (A – 18°) [∵cot (90° – θ) = tan θ]
⇒ 90° – 2A = A – 18° ⇒ 3A = 108° ⇒ A = 
∴ ∠ A = 36°
Question 4.
If tan A = cot B, prove that A + B = 90°.
Solution:
tan A = cot B ⇒ tan A = tan (90° – B) [ ∵ tan (90° – θ) = cot θ]
⇒ A = 90° – B ⇒ A + B = 90° Proved
Question 5.
If sec 4A = cosec (A – 20°), where 4A is an acute angle, find the value of A.
Solution:
sec 4A = cosec (A – 20°)
⇒ cosec (90° – 4A) = cosec (A – 20°) [cosec (90° – θ) = sec θ]
⇒ 90° – 4A = A – 20° ⇒ 5A = 110°
A = 
A = 22°
∴ ∠ A = 22°
Question 6.
If A, Band Care interior angles of a triangle ABC, then show that: sin (
Solution:

Question 7.
Express sin 61° + cos 75° in terms of trigonometric ratios of angles between 0° and 45°.
Solution:
sin 67° + cos 75° = sin (90° – 23°) + cos (90° – 15°) = cos 23° + sin 15°
Question 1.
  Express the trigonometric ratios sin A, sec A and tan A in terms of cot A.
  Solution:
  From trigonometric identity, cosec² A – cot² A = 1, we get
  
Question 2.
  Write all the other trigonometric ratios of ∠A in terms of sec A.
  Solution:
  Since sin² A + cos² A = 1, therefore
  
Question 3.
  Evaluate:
  (i)
  
  (ii) sin 25° cos 65° + cos 25° sin 65°
  Solution:
  
  (ii) sin 25° cos 65° + cos 25° sin 65° = sin 25° cos (90° – 25°) + cos 25° sin (90° – 25°)
  = sin 25° sin 25° + cos 25° cos 25°
  = sin² 25° + cos² 25° = 1
Question 4.
  Choose the correct option. Justify your choice.
  (i) 9 sec² A – 9 tan² A =
  (A) 1
  (B) 9
  (C) 8
  (D) 0
(ii) (1 + tan θ + sec θ) (1 + cot θ – cosec θ ) =
  (A) 0
  (B) 1
  (C) 2
  (D) -1
(iii) (sec A + tan A) (1 – sin A) =
  (A) sec A
  (B) sin A
  (C) cosec A
  (D) cos A
(iv) 
  (A) sec² A
  (B) -1
  (C) cot² A
  (D) tan² A
  Solution:
  (i) 9 sec² A – 9 tan² A = 9(sec² A – tan² A) = 9 x 1 = 9
  Correct option is (B)
  
Question 5.
  Prove the following identities, where the angles involved are acute angles for which the expressions are defined.
  
  Solution:
  
  
